Species niche and fitness differences explain the success and impact of biological invasions: Extending Darwin's naturalization hypothesis

Shao-peng Li

shaopeng.li@biology.gatech.edu

School of Biological Sciences, Georgia Institute of Technology, USA

Biological invasion: success and impact

Invasive species in Georgia: kudzu

Photo credit: user: streaminspector/Flickr

"As species of the same genus have usually ... some similarity in habits and constitution, and always in structure, the struggle will be more severe between species of the same genus, when they come into contact with each other..."

----Darwin. 1859. The Origin of Species

Li et al. 2015. Ecology Letters

Li et al. 2015. Ecology Letters

Li et al. 2015. Ecology Letters

Literature Mixed

Study	Taxon	Location	Effect of relatives	
Mack et al., 1996 (32) Plants United States		United States	722	
Rejmanek, 1996 (33)	Plants	California		
Daehler, 2001 (38)	Plants	Hawaii	+	
Duncan and Williams, 2002 (39)	Plants	New Zealand	+	
Diez et al., 2008 (40)				
Lambdon and Hulme, 2006 (47)	Plants	Mediterranean islands	0	
Ricciardi and Mottiar, 2006 (48)	Fish	Global	0	
Diez et al., 2009 (41)	Plants	Australia, New Zealand	+	
Jiang et al., 2010 (34)	Bacteria	Experimental	12	
Tan et al., 2012 (37)				
Davies et al., 2011 (35)	Plants	California (Serpentine)		
Tingley et al., 2011 (42)	Amphibians	Global	+	
van Wilgen and Richardson, 2011 (36)	Reptiles	California, Florida	2144 - C	
Violle et al., 2011 (30)	Protists	Experimental	222	
Ferreira et al., 2012 (43)	Reptiles	Global	. 	
Peay et al., 2012 (31)	Nectar yeast	Experimental	12	
Maitner et al., 2012 (44)	Birds	Florida, Hawaii, New Zealand	+	

Table 1. The effect of phylogenetic relatedness on the probability of establishment by nonnative species

Jones et al. 2011, PNAS

Modern coexistence theory

Turcotte & Levine. 2016. Trends in Ecology & Evolution

MacDougall et al. 2009. Journal of Ecology

Our framework

Scientific questions

- 1. Could phylogenetic distance capture the niche and relative fitness differences between invaders and natives?
- 2. How invader-native niche and relative fitness differences regulate invasion success and impact?
- 3. When Darwin's naturalization hypothesis is valid?

Native species

Lake Clara Meer in Piedmont Park of Atlanta

Bacillus cereus (BC)

Staphylococcus pasteuri (SP)

Serratia marcescens (SM)

Invader species

Mutual invasion experiment

 μ = growth rate

$$S_1 = (\mu_{alone} - \mu_{invading}) / \mu_{alone}$$

Niche difference =
$$1 - \sqrt{S_1 S_2}$$

Relative fitness difference =
$$\sqrt{S_2/S_1}$$

Narwani et al. 2013. Ecology Letters

From PD to ND and RFD

PD could capture ND and RFD between Serratia marcescens and the natives, but not the other two invaders.

Invasion success and impact experiment

Invasion success = \ln (invader density)

Invasion impact = changes in native density

PD on invasion success and impact

The effect of PD on invasion were species-specific:

 PD is a good predictor of invasion success and impact for Serratia marcescens, but not the other two invaders.

ND and RFD on invasion success and impact

For all three invaders:

- Invasion success increased with ND and RFD;
- Invasion impact increased with RFD.

ND and RFD on invasion success and impact

When three invaders were considered together:

- ND is a single best explanatory variable of invasion success;
- RFD is a single best explanatory variable of invasion impact.

Variable	Posterior mean	Low 95% CI	Upper 95% CI	P_{MCMC}	DIC
Invasion success					
species richness	-0.49	-1.74	0.73	0.427	1920.40
PD	7.13	-56.49	65.57	0.713	1896.19
ND	15.30	12.01	18.74	<0.001	1849.69
RFD	4.25	2.84	5.57	< 0.001	1886.29
Invasion impact					
species richness	1.13	-1.40	3.31	0.345	1672.89
PD	30.02	8.05	51.28	0.022	1658.22
ND	15.45	9.23	21.91	< 0.001	1655.14
RFD	8.70	6.40	11.20	<0.001	1622.13

 Table 1. MCMCglmm results for univariate models.

Take home message

- Invasion success largely depended on invader-native niche differences;
- Invasion impact largely depended on the fitness advantage of the invaders relative to natives.
- Darwin's naturalization hypothesis is valid if phylogenetic distance could capture niche difference that determines invasion success.

Acknowledgements

- Lin Jiang
- Chao Ma
- Jiaqi Tan
- Xian Yang
- Qiana Xu
- Marc Cadotte
- Chengjin Chu
- Daijiang Li
- Kai Zhu

Thank you!

http://biosci.gatech.edu/people/shaopeng-li